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Abstract 

This work investigates a combined stochastic and deterministic 
optimization approach for multivariate mixture density estimation. 
Mixture probability density models are selected and optimized by 
combining the optimization characteristics of a multiagent stochastic 
optimization algorithm based on evolutionary programming and the 
expectation-maximization algorithm. Unlike the traditional finite 
mixture model, generally composed of a sum of normal component 
densities, the generalized mixture model is composed of shape-adaptive 
components. Rissanen's minimum description length criterion provides 
the selection mechanism for evaluating mixture model fitness. The 
classification problem is approached by optimizing a mixture density 
estimate for each class. A comparison of each class's posterior 
probability (Bayes rule) provides the classification decision procedure. 
A classification problem is posed, and the classification performance of 
the derived generalized mixture models is compared with the 
performance of mixture models generated using normally distributed 
components. While both approaches produced excellent classification 
results, the generalized mixture approach produced more parsimonious 
density models from the training data. 

1     INTRODUCTION 

The area of nonparametric density estimation is proving to be an 
increasingly useful tool in providing a mathematical approach for the 
characterization and classification of complicated data. Several 
methods of nonparametric density estimation have been proposed, 
including (but not limited to) kernel estimators (Parzen 1962; Silverman 
1986), maximum penalized likelihood estimators (Good and Gaskins 
1971; Silverman 1982), and the method of mixtures (McLachlan 1986). 
Classification systems based on some neural network models, such as 
radial basis functions (Moody and Darken 1989) and the probabilistic 
neural network (Specht 1990), are mathematically and functionally 
equivalent to mixture models and kernel estimators, respectively. These 
neural network models therefore share the same characteristics and 
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limitations of their statistical analogues. The kernel estimator is 
simple to derive from the data, but requires the entire training sample 
for probabilistic inference. When compared to mixture models, kernel 
estimators have larger storage and longer run-time execution speed 
requirements. Finite mixture models provide data reduction and 
generalization, thus reducing the storage requirements and improving 
execution speed, but are computationally more expensive to derive. 

This work investigates the use of combining stochastic search with the 
method of maximum likelihood for the optimization of mixture density 
estimates, where the number of components, the functional shape of each 
component, and the component parameters are simultaneously 
optimized. In this paper, these shape-adaptive mixture models are 
called generalized mixtures. The classification performance of 
generalized mixture densities is computed and compared to normal 
component mixtures for a two-class classification problem. 

The following subsections introduce the mixture method approach for 
probability density estimation. The expectation-maximization (EM) 
algorithm for parameter optimization is described, and its relationship 
to finite mixture parameter optimization estimation is explained. 
Measures of model fitness and complexity are also discussed. Section 2 
discusses stochastic approaches to optimization, including evolutionary 
programming. Section 3 discusses the formulation of the generalized 
mixture's components, and the combining of the EM and stochastic 
approaches for model order and parameter optimization. Section 4 
describes a two-dimensional density estimation problem, and the 
performance characteristics of the stochastic-EM optimization process. 
Classification error rates of the evolved optimal generalized mixtures 
are computed and compared to normal-component mixture models in 
section 5. Conclusions are offered in section 6. 

Finite mixture methods 

A finite mixture distribution is defined informally as a distribution that 
decomposes into two or more proportionally scaled probability 
distributions. Mathematically, a mixture probability density function 

/, composed of q probability distributions /„...,/,, is defined as the 

following: 

/(xl0) = t«X(xlö) <*> 

where $ is the vector of free parameters $=[a,$]T. The proportions 

a,,K ,a, denote the relative contributions made by their respective 
density components. Their values are constrained by the following: 

i a. = l and       a,>0    (» = 1,K ,q).      (2) 



A goal of mixture model density estimation is to produce density 
estimates where the number of mixture components q is much smaller 
than the sample size n. Mixture models therefore attempt to provide 
some of the computational efficiency associated with parametric 
density estimation, while minimizing the number of assumptions 
concerning the true underlying distribution. 

Unfortunately, analytical optimization of a finite mixture is 
complicated even for a moderate sample size (Choi and Bulgren 1968). A 
nonanalytical solution for mixture model optimization is provided by 
the EM algorithm. 

Expectation-maximization algorithm for finite mixture optimization 

An important generalization of the method of maximum likelihood was 
developed by Dempster et al. (1977), in which an iterative procedure 
was introduced that allows maximum likelihood estimates to be 
generated from incomplete data. Here "incomplete" is used in the sense 
that a component of the data is occasionally (or always) missing, and 
therefore some data does not provide values for the variables under 
consideration. 

Suppose it is desired to find the maximum likelihood estimate of 0 
for the likelihood function L(6) = g(x\6), where x is a set of 
"incomplete" data. Let y be a complete version of the data, and let the 

likelihood ofy be denoted as f(y\9). From an initial approximation 
0(O), the EM algorithm generates an iterative sequence of estimates Gm 

via the following two steps: 

Estep: Compute  Q(6\6m) = E[{logf(y\9)}\x,6(i)] (3) 

Mstep: Set   0(4+1) = maxß(0l0(t>) (4) 

In solving a finite mixture problem, where the number of components is 
determined a priori, Redner and Walker (1984) give a formulation for 
the   general   EM   approach.   For   a  given   vector   of  parameters 

<j)c = (a',K ,a°,0,e,K ,0^)T, which is the current approximate maximum 

likelihood estimate of the log-likelihood function logL(<j>\x), the next 

approximate maximum likelihood estimate <p*=(a*,K ,a*,6*,K ,d*)T 

of the log-likelihood function is given by 

a. = —V v (5) 
ntt  p(xk\<t>°) 

ere argmax^togp^JÖ,)^^. (6) 
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Figure 10. Generalized mixture model (a) and traditional normal mixture (b) 
decision surfaces for the two-class Flick data problem. 



Note that the term a'p(xk\6')/p(xk\(t>') is the posterior probability 

that xk originated from the z'th component population, given the current 

maximum likelihood estimate <(>'. 
At    each    iteration,    the    EM    algorithm    guarantees    that 

logL(^»+la:)>logL(0'l^). Given an a priori selection of the number of 
mixture components, this approach iteratively determines the 
proportional and parametric components of each component. An 
information criterion relating density estimate fitness and model 
complexity is required for comparison of mixture density estimates with 
a varying number of components. 

Mixture model order identification 

Models are generally compared by their complexity and how well 
they fit the data, with the goal of maximizing model fitness while 
minimizing model complexity. These constraints generally are 
diametrically opposed, i.e., increasing model complexity will generally 
allow for increasing the model fitness. To measure how well the models 
fit the data, a function incorporating the likelihood function is 
generally used. The likelihood function has several desirable properties 
which make it appropriate for measuring the relationship between 
model and data. Cramer (1946) demonstrates that under certain 
regularity conditions, the maximum likelihood estimators (MLE) of a 
multivariate model have solutions which are asymptotically normal 
and joint asymptotically efficient estimates of the parameters. 
Therefore, the maximum likelihood estimates of a set of parameters 
have the smallest variance about the true parameter values for all 
unbiased estimators. The MLE thus provides a very sensitive measure of 
fitness between model and data. 

Many criteria of model complexity determination have been 
developed from the concept of maximizing the likelihood function 
while penalizing the number of free parameters required. These criteria 
include the generalized likelihood ratio test (Casella and Berger 1990), 
Akaike's information criterion (Akaike 1974), and the minimum 
description length (MDL) criterion (Rissanen 1986). The MDL criterion is 
formulated as 

MDL{x) = mini-log L(0l;c) + ^ log nl (7) 

where L(0\x) is the likelihood function of the model, k is the number of 
the free parameters used to represent the data, and n is the cardinality 
of x. It is interesting to note that Schwarz's criterion (Schwarz 1978), a 
Bayesian derived criterion for model selection, is identical to the MDL 
criterion. Given a data sample x, a density estimate model M. is 

"better" than another model  Mj if  MDL{x\Mi)<MDL{x\Mj). In  the 



present work, the MDL criterion provides the likelihood-based measure 
of model fitness in the mixture model optimization process. 

2     STOCHASTIC OPTIMIZATION 

Random (or stochastic) search techniques have been used for function 
optimization since the 1950s. Stochastic search strategies are 
competitive with or superior to traditional search strategies (such as 
gradient search techniques) when the cost or objective function under 
optimization is difficult to compute, or when the function to be 
minimized has many suboptimal solutions (local minima). Other 
advantages, enumerated by Karnopp (1963), include the ease of 
programming, inexpensive realization of possible solutions, as well as 
flexibility in the expression of the criterion function. 

Stochastic optimization techniques are based on either single point or 
multiple agent algorithms. Single point algorithms include the random 
walk, the creeping random method (Brooks 1958), and the method of 
Solis and Wets (1981). Multiple agent stochastic search algorithms, 
such as genetic algorithms (Goldberg 1989), evolution strategies (Back 
and Schwefel 1993), and evolutionary programming (Fogel 1991), are 
becoming well known for their optimization properties. 

Figure 1 is a graphical representation of an evolutionary programming 
(EP) algorithm. A population of models (solutions) generates new 
models (offspring) via mutation, and then the complete population 
competes for survival to the next iteration. In EP, mutation consists of 
random perturbations of the parameters, with the magnitude of the 
perturbation generally self-adaptive or tied to the fitness of the parent. 
For the process of real-valued parameter optimization, the mutation 
process generally consists of perturbing a parameter value with a normal 
or lognormally distributed random variable. The normal perturbation 
scheme is given as the following: 

e* = 6 + N(0,f-s + z) (8) 

where / is the measure of error of the parent model, and z and s are an 
offset and scale factor, respectively. The random nature of this 
mutation, although useful in escaping local minima, is inefficient for 
direct minimization. Also, the use of the error value / in the variance 

term f-s+z allows the variance to shrink as the error decreases (model 

fitness improves), but is properly defined only when / • s + z > 0. Several 
approaches have been developed to avoid any association of the fitness 
value with the mutation process, and to speed the convergence to 
optimal solution (Waagen et al. 1992; McDonnell and Waagen 1994). The 
next section describes the hybrid approach developed in this work for 
mixture model selection and optimization. 
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Figure 1. Evolutionary programming optimization algorithm. The mutation and 
competition steps are stochastic in nature. 

3 STOCHASTIC-DETERMINISTIC MIXTURE DENSITY 
ESTIMATION 

This section details the process of determining a multivariate mixture 
model from a set of independent, identically distributed data. Preceding 
the discussion of the optimization process, a discussion of the 
distributional form of the components which make up the mixture is in 
order. 

Generalized mixture component formulation 

The functional form of the mixture component distribution is based on a 
generalized kernel function described by Fukunaga (1990). The functional 

form of the generalized mixture components, denoted as /(*ljU,£,m), is 
given as 

f(x\ß,L,m) = 
wT(f)r"(^)      1 

M*r*'te)   |z|- -xexp r(#) 
«T(A) 

(9) 

where n is the dimensionality of the data, ß is the mean, £ is the 
covariance matrix, and m is the shape parameter of the mixture 
component. The probability density function of the ^-component mixture 
distribution is therefore given as 

f(x) = fjaif(x\ßi,Zi,mi) (10) 

The shape parameter m allows the function to include both the 
multivariate normal and multivariate uniform distributions as special 

cases. A graph of the univariate distribution of f(x\0,l,m) for two values 
of m is given in Figure 2. 
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Figure 2. Distribution of f(x\0,l,m) from Eq. 9 for m = 1,100. Special cases of 
Eq. 9 include the multivariate uniform and normal distributions. 

Hybrid multiagent approach to optimization 

The multiagent optimization process investigated in this work combines 
a stochastic mutation process with the deterministic EM algorithm for 
component number and parameter optimization. A population of N 
possible solutions (mixture models) is generated and maintained 
throughout the optimization process. Optimization consists of two steps, 
as graphically shown in Figure 3. Optimization ends either after a fixed 
number of iterations or after the best mixture's error value remains 
constant for a significant number of iterations. 

One issue with the combined stochastic-deterministic optimization 
approach is the fact that the parameters of a mutated offspring are not 
optimized for its component or shape representation, whereas the 
parameters values of the offspring's parent have been optimized (to 
some extent) for the mixture's shape and component number. Therefore 
the offspring models are initially at a disadvantage to the parent 
models in the competition process. An attempt to alleviate this problem 
is made by allowing each offspring model's parameters to be optimized 
via the EM algorithm for several iterations before model selection 
occurs. This optimization might be biologically analogous to the 
environmental learning phase of childhood and adolescence, but this 
paper will not try to justify or defend this analogy as truth. 
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Figure 3. Multiagent mixture optimization procedure. The stochastic and 
deterministic portions of the approach are correspondingly labeled. Note that 
the competition is deterministic, and the best N models are always selected for 
survival. 

The first step is mutation, consisting of the generation of three mixture 
models from each surviving parent model. The goal of mutation is to 
optimize of the number of components in the mixture and the shape 
parameters of each component. Three new models (offspring) are 
produced via the following rules: 

Offspring 1: Add or remove a randomly selected 
component. 

Offspring 2: Modify the shape parameter of a randomly 
selected component via the positive value of a random 
normal perturbation: 

t     fm + |tf(0,c)|   */m + |JV(0)C)|<M^ 
m     1     M^ jfw + pV(0.c)|>M^ 

where A/^ is an arbitrary constant (200 in this 
investigation). 

Offspring 3: Modify the shape parameter of the same 
selected component (as offspring 2) via the negative 
value of the same (as offspring 2) random normal 
perturbation: 

rOT-|JV(0,c)|   ifm-\N(0,c)\>l 
m     {        1 ifm-\N(0,c)\<l 

After the offspring models have been generated and the EM algorithm 
has been applied repeatedly to each child, the combined population of 
models is individually passed through a single iteration of the EM 
algorithm. In each model, the EM algorithm optimizes the mean and 
covariance parameters, as well as the component proportion values, 
according to equations (5) and (6). The fitness of each model is then 
computed using the MDL (7), the best N models (from the population of 
AN models) are kept, and the process is repeated. 

4 MIXTURE MODEL OPTIMIZATION CHARACTERISTICS 

To test the capability of the optimization process, a two-dimensional 
classification problem is posed. Two-dimensional problems aid in 
visualization and interpretation. Barring sample size issues, the 
generalized  mixture  technique  is  directly  applicable  to  higher 



dimensional problems. In the experiment, training samples are created 
from each class's underlying distribution. These samples are used to 
derive generalized mixture models for each class. For comparison 
purposes, optimal (in the MDL sense) normal-component models are also 
derived for the data. 

Flick data 

To test the capability of the density estimation process, and to assess 
the classification capability of the generalized mixture model 
approach, two overlapping, piecewise-continuous distributions 
previously described by Flick et al. (1990), (herein labeled as classes 1 
and 2) are estimated via the mixture distributions discussed in section 3. 
The probability density functions for class 1 [class 2] are defined on the 
unit square as the following: 

f(x,y) = 

3.0 [0.0] 0<v<0.25 
0.86 [0.14] 0.25<y<b(x) 
0.14 [0.86] b(x)<y<0.75 
0.0 [3.0] 0.75 <y< 1.0 

(13) 

where 6(.x) = 0.5-0.25 cos(2;ct). Figure 4 graphically displays the 
underlying probability density function for each class. These 
distributions overlap, so that the optimal classification rule, based on 
knowledge of the true underlying probability distribution of each class, 
will misclassify (on average) 3.5% of the new data sample presented for 
classification (3.5% of each class). 
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Figure 4. Probability density functions for classes 1 (top) and 2 (bottom). 

The training sets consist of 200 samples of each class. The training 
sample for each class is shown in Figure 5. For the model optimization 
process, each class was optimized separately, using the MDL as the 
measure of model fitness. The model population number N (of Figure 3) 
was arbitrarily set to 5. 
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Figure 5.  Training sets of the two-class problem.   Each sample consists of 200 
points. 

For both classes, the algorithm converged to a solution within 50 
iterations. The value of the MDL for the "best" mixture model and its 
corresponding number of components at each iteration are shown in 
Figure 6. Table 1 and Figure 7 display the resulting mixture models 



derived by the algorithm from the sample data. The results 
demonstrate that the algorithm quickly minimizes the number of 
components in its optimization process, with both data samples being 
optimally modeled by two-component mixture models. 
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Figure 6. Best model's MDL score (a) and number of components (b). Model 
optimization occurs quickly, with both density models optimized within the first 
20 iterations. 



Table 1. Final generalized mixture model estimates for each class derived via 
stochastic-deterministic optimization. Each model was derived from 200 data 
points. 

Class Mixture Estimate X a</(*K •L» • mi) 

1 
f 

0.7805-/ 
"jcl "0.5146" 

0.1354J' 

" 0.08035    -0.00179" 
-0.00179    0.00554 

,2.172 + 

0.2195/ 
V 

"0.4790" 
0.4668J 

" 0.04007    -0.00362" 
-0.00362    0.01960 

> 
,1.344 

j 

2 0.6628/ 
ro.5303" 
[o.8780_ 

"0.08399   8.3£-4" 
'L8.3£-4   0.00582 

,4.424 + 

0.3372-/ 
["0.5193" 
[0.6394_ 

" 0.10910    -0.00861" 
{-0.00861    0.03573 

,4.070 

Figure 7. Generalized mixture models (class 1 (a), class 2 (b)) generated by 
stochastic-deterministic optimization. 

Normal component mixture model comparison 

To investigate its utility, the generalized mixture approach is compared 
with the traditional mixture approach. The traditional mixture consists 
of normally distributed components. Computing models using normal 



components illuminates the representation and classification capability 
of the generalized mixture models. 

Optimal (in terms of the mixture's MDL value for the training data 
set) normal component mixture density estimates were computed from 
the training data. Figure 8 display the normal mixture models of each 
class. 

The densities generated via the two approaches are given in Table 2. 
As shown in the table, the generalized mixture approach produces 
superior models in terms of the log-likelihood function, the total number 
of free parameters used for data representation, and the MDL criteria. 
This superiority is due to the added flexibility of component shape 
modification. The next section compares the classification capability of 
these density models. 

(1,0,0) 

Figure 8. Optimal normal component mixture models (class 1 (a), class 2 (b)). 

Table 2. Comparison of fitness characteristics of generalized and normal 
mixture models derived from the training data. The models are optimal with 
respect to the training data and the criterion function, the MDL (Eq. 7). 

Feature Generalized Mixture Normal Mixture 

Class 1 Class 2 Class 1 Class 2 
Number of 
components 2 2 2 3 

Log-likelihood 
function 115.585 95.274 106.177 94.270 

Number of free 
parameters 13 13 11 17 
MDL score -81.5104 -60.8346 -77.0359 -49.2344 

CLASSIFICATION RESULTS 

The mixture models produced are probability density functions, so it is 
natural to use Bayes rule as the decision rule for classification of new 



data. Given a set of c possible classes (oit Bayes rule is given as the 
following: 

(14) 

where /
,
(ö>,IJC, 0„.) is the posterior probability of a new sample x is 

associated to class (0r A new data sample is assigned to the class with 
the largest posterior probability. With the assumption that the prior 
probabilities p(<o,) of each class are equal (an assumption we make for 
this two-class example case), the classification rule can be written as 

Assign x to class 
i  ifmm^e^f{x\<ot,e2) 
2   otherwise 

(15) 

The optimal discriminant boundary for the underlying distributions, 
given the decision rule of equation (15), is displayed in Figure 8. To 
compare the discriminant boundary produced by the mixture distribution 
estimates and the classification rule with the optimal decision 
boundary, a plot of the decision surface generated by the mixture 
estimates was computed. The mixture model decision surface is shown in 
Figure 9. 

Given the small number of samples (1000 samples of each class were 
used for training by Flick et al.), the mixture estimates do well in 
characterizing the decision surface of the underlying distribution. The 
optimized generalized mixtures are next compared with the normal 
component mixture models of their classification capability. 

(0,o, i; 
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Figure 9. Optimal decision boundary for underlying class distributions. 



Classification comparison of the normal component mixture model 
estimates 

To compare the classification characteristics of the two mixture model 
paradigms, six sets of 5000 samples from each class were randomly 
generated and classified according to equation (15). The classification 
performance of the generalized and normal mixture model estimates on 
these data sets is given in Table 2. 

Table 3. Classification performance of generalized and normal mixture 
models on Flick test data. Numbers correspond to number of correctly 
classified samples from a test sample of 10000 points (5,000 points from each 
class). 

Data Set Generalized Mixtures Normal Mixtures 
1 9440 9481 
2 9456 9487 

3 9425 9466 
4 9418 9448 
5 9412 9428 
6 9452 9464 

As noted in the previous section, the theoretically optimal classifier 
will on average correctly classify 96.50% of the samples presented, due 
to the overlap of the class distributions. The table demonstrates that 
both mixture model paradigms produced excellent results, with the 
generalized component mixture models correctly classifying 94.34% of 
the test samples versus 94.62% for the normal component mixture models. 
To test if the classification difference in the mixture approaches is 
statistically significant, a Wilcoxon paired sample test was applied. 
For the data in Table 3, a Wilcoxon statistic returns a p-value of 0.05. 
Therefore a statistically significant difference is detected (at the 
a = 0.05 level of significance) in the classification performance of the 
two models. Note, however, that this difference is on average only 
0.28%, and as demonstrated in the statistics of Table 2, the generalized 
mixture models are more parsimonious (i.e., they require fewer free 
parameters to represent the two classes). 

CONCLUSIONS 

Mixture models provide an excellent nonparametric approach for 
density estimation and pattern classification. The algorithm described 
by this paper frees a mixture method practitioner from having to make 
an a priori estimate of the number of components required by a mixture 
for optimal representation, and allows the practitioner to use shape- 
parameterized distributions as the functional basis of the mixture 
components. 



This work has demonstrated that the combination of a multiagent 
stochastic search technique and the EM algorithm can produce sound 
probability density estimates for multivariate data. The mixture 
distributions produced by the multiagent optimization process display 
promising classification capabilities. Although the study is too limited 
for statements concerning the general classification capabilities of the 
algorithm and the mixture estimates it produces, this work 
demonstrates that elegant classifier systems can be produced from 
algorithmically optimized mixture models. 
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